If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x2 + 4x = 40 Reorder the terms: 4x + x2 = 40 Solving 4x + x2 = 40 Solving for variable 'x'. Reorder the terms: -40 + 4x + x2 = 40 + -40 Combine like terms: 40 + -40 = 0 -40 + 4x + x2 = 0 Begin completing the square. Move the constant term to the right: Add '40' to each side of the equation. -40 + 4x + 40 + x2 = 0 + 40 Reorder the terms: -40 + 40 + 4x + x2 = 0 + 40 Combine like terms: -40 + 40 = 0 0 + 4x + x2 = 0 + 40 4x + x2 = 0 + 40 Combine like terms: 0 + 40 = 40 4x + x2 = 40 The x term is 4x. Take half its coefficient (2). Square it (4) and add it to both sides. Add '4' to each side of the equation. 4x + 4 + x2 = 40 + 4 Reorder the terms: 4 + 4x + x2 = 40 + 4 Combine like terms: 40 + 4 = 44 4 + 4x + x2 = 44 Factor a perfect square on the left side: (x + 2)(x + 2) = 44 Calculate the square root of the right side: 6.633249581 Break this problem into two subproblems by setting (x + 2) equal to 6.633249581 and -6.633249581.Subproblem 1
x + 2 = 6.633249581 Simplifying x + 2 = 6.633249581 Reorder the terms: 2 + x = 6.633249581 Solving 2 + x = 6.633249581 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + x = 6.633249581 + -2 Combine like terms: 2 + -2 = 0 0 + x = 6.633249581 + -2 x = 6.633249581 + -2 Combine like terms: 6.633249581 + -2 = 4.633249581 x = 4.633249581 Simplifying x = 4.633249581Subproblem 2
x + 2 = -6.633249581 Simplifying x + 2 = -6.633249581 Reorder the terms: 2 + x = -6.633249581 Solving 2 + x = -6.633249581 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + x = -6.633249581 + -2 Combine like terms: 2 + -2 = 0 0 + x = -6.633249581 + -2 x = -6.633249581 + -2 Combine like terms: -6.633249581 + -2 = -8.633249581 x = -8.633249581 Simplifying x = -8.633249581Solution
The solution to the problem is based on the solutions from the subproblems. x = {4.633249581, -8.633249581}
| 2x-3y+7=0 | | 7x^2-49x+84= | | -15/3=-5 | | 5x^2+45x+40= | | -3x+5=-x-1 | | 5x-6=-5x+34 | | 25x^2-5x+3= | | 23x^2-5x+3= | | 2x(2x+1)(x-4)=0 | | (-3+d)=8d+32 | | -8x=-4x-24 | | 7m-4=6m-8 | | -29=-a | | 3m-12n+2m+8m= | | x(3x+8)=3 | | 2(x)(x+2)=70 | | 4x(7+2x)-(2+4x)=12 | | 3x^2+17x+2=0 | | -3[2w]=-12 | | -3[2w]=-21 | | -3[2w]=-212 | | y=-3/2(-2)+3 | | y=-3/2x+3 | | 1x(2+2x)-(1+1x)=4 | | [4f+1]-2=5 | | 81v^2-4=0 | | log(1+k)=0.04 | | 3x(7+2x)-(2+4x)=22 | | 2(x-4)-7=4x-2(5+x) | | 5=10(1-e-x) | | -6x+2y-(4+x)+(x+4)= | | 4=3(x+0.5) |